302.AI API Document
  1. Composite Interface
  • Default module
    • Large Language Model
      • API Migration Guide
      • Exclusive Feature
        • Search Online
          • Chat(Search online)
        • Depth-First Search
          • Chat(Depth-First Search)
        • Image Analysis
          • Chat(Image analysis)
        • Reasoning mode
          • Chat(Reasoning mode)
        • Link Parsing
          • Chat(Link Parsing)
        • Tool Invocation
          • Chat(tool invocation)
        • Long-term memory (Beta)
          • Memobase
            • User Management
              • Create User
              • Get User
              • Update User
              • Delete User
            • Data Management
              • Insert Data
              • Get Datas
              • Get Data
              • Delete Data
            • Memory Management
              • Flush Buffer (Generate Memory)
              • Get User Profile (Get Memory)
              • Delete User Profile (Delete Memory)
          • Chat (Long-term Memory)
        • Simplified API
          • Chat (Simplified API)
        • Asynchronous call
          • Asynchronous request to chat
          • Asynchronously retrieve/get results
        • Claude Format
          • Messages(Claude Format)
      • Model Support
        • Models (List models)
        • Status(Model Status)
      • OpenAI
        • Chat(Talk)
        • Responses(Talk)
        • Chat(Streamed return.)
        • Chat (gpt-4o Image Analysis)
        • Chat (gpt-4o Structured Output)
        • Chat (gpt-4o function call)
        • Chat (gpt-4-plus image analysis)
        • Chat (gpt-4-plus image generation)
        • Chat(gpt-4o-image-generation modify image)
        • Chat (gpts model)
        • Chat (chatgpt-4o-latest)
        • Chat (o1 Series Model)
        • Chat (o3 Series Model)
        • Chat(o4 Series)
        • Chat(gpt-4o audio model)
        • Responses(Deep-Research)
      • Anthropic
        • Chat(Talk)
        • Chat(Analyze image)
        • Chat(Function Call)
        • Messages(Original format)
        • Messages(Function Call)
        • Messages(Thinking mode)
        • Messages(128k output)
        • Messages (for Claude Code)
      • Gemini
        • Official Format
          • v1beta(Official Format - Chat)
          • v1beta (Official Format - Text-to-Image)
          • v1beta (Official Format - Image Editing)
        • Chat(Talk)
        • Chat(Analyze image)
        • Chat(Image Generation)
      • China AI Model
        • Chat (Baidu ERNIE)
        • Chat (Tongyi Qianwen)
        • Chat (Tongyi Qianwen-VL)
        • Chat(Tongyi Qianwen-OCR)
        • Chat (Zhipu GLM)
        • Chat (Zhipu GLM Multimodal)
        • Chat (Baichuan AI)
        • Chat (Moonshot AI)
        • Chat (Moonshot AI-Vision)
        • Chat (01.AI)
        • Chat (01.AI-VL)
        • Chat (DeepSeek)
        • Chat (DeepSeek-VL2)
        • Chat (ByteDance Doubao)
        • Chat (ByteDance Doubao-Vision)
        • Chat(ByteDance Doubao Image Generation)
        • Chat (Stepfun)
        • Chat (Stepfun Multimodal)
        • Chat (iFLYTEK Spark)
        • Chat (SenseTime)
        • Chat(Minimax)
        • Chat (Tencent Hunyuan)
      • SiliconFlow
        • Chat(SiliconFlow)
      • PPIO
        • Chat(PPIO)
      • SophNet
        • Chat(SophNet)
      • Open Source Model
        • Chat(LLaMA4)
        • Chat(LLaMA3.3)
        • Chat(LLaMA3.2 multimodal)
        • Chat(LLaMA3.1)
        • Chat(Mistral)
        • Chat(Pixtral-Large-2411multimodal)
        • Chat(Gemma-7B、Gemma-3-27b-it)
        • Chat(Gemma2-9B)
        • Chat(Command R+)
        • Chat(Qwen2)
        • Chat(Qwen2.5)
        • Chat(Qwen2.5-VL)
        • Chat(Qwen3)
        • Chat(Llama-3.1-nemotron)
        • Chat(QwQ-32B、QwQ-Plus、QwQ-32B-Preview)
        • Chat(LongCat-Flash-Chat)
      • Expert Model
        • Chat(WiseDiag Medical Model)
        • Chat (Xuanyuan Financial Model)
        • Chat (Farui Legal Model)
        • Chat (Alibaba Math Model)
        • Chat(Perplexity search)
        • Chat(Alibaba Tongyi Translation Model)
      • Other Models
        • Chat(grok-3)
        • Chat(grok-2)
        • Chat(grok-2-vision)
        • Chat(Nova)
        • Chat(v0)
        • Chat (UniFuncs Deep Research)
        • Async Get Result
    • Image Generation
      • Unified interface
        • Explanation
        • 302 Format V1
          • Image Generation (302 Format)
        • 302 Format V2
          • Synchronous Image Generation (302 Format)
          • Asynchronous Image Generation (302 Format)
          • Webhook Request Data Example
          • Asynchronous Image Generation Result Fetch
        • Openai Format
          • Image Generation (OpenAI Format)
          • Image Editing (OpenAI Format)
      • GPT-Image-1
        • Generations(Image generation)
        • Edits(Modify Image)
      • DALL.E
        • Generations(DALL·E 3和DALL·E 2)
        • Edits(DALL·E 2)
        • Variations(DALL·E 2)
      • Stability.ai
        • Text-to-image (Image Generation-V1)
        • Generate (Image Generation-SD2)
        • Generate (Image Generation-SD3-Ultra)
        • Generate (Image Generation-SD3)
        • Generate(Image Generation-SD3.5-Large)
        • Generate(Image Generation-SD3.5-Medium)
        • Generate(Image to Image-SD3)
        • Generate(Image to Image-SD3.5-Large)
        • Generate(Image to Image-SD3.5-Medium)
      • Midjourney
        • Imagine
        • Action
        • Blend
        • Describe
        • Modal
        • Fetch
        • Cancel
      • Midjourney-Relax
        • Imagine
        • Action
        • Blend
        • Describe
        • Modal
        • Fetch
        • Cancel
      • Midjourney-Turbo
        • Imagine
        • Action
        • Blend
        • Describe
        • Modal
        • Fetch
        • Cancel
      • 302.AI
        • SDXL
        • SDXL-Lora
        • SDXL-Lightning
        • SDXL-Lightning-V2
        • SDXL-Lightning-V3
        • SD3
        • SD3-V2
        • Aura-Flow
        • Kolors
        • Kolors(Reference Image Generation-KLING)
        • QRCode Generation
        • Lora
        • Lora(Get task result)
        • SD-3.5-Large
        • SD-3.5-Large-Turbo
        • SD-3.5-Medium
        • Lumina-Image-V2(Image generated)
        • Playground-v25(Image generated)
        • Omnigen-V1(Image generated)
        • Qwen-Image(image generation)
        • Qwen-Image-Lora (LoRA image generation)
        • Qwen-Image-Lora-Trainer (LoRA training)
        • Qwen-Image-Lora-Trainer (asynchronous result retrieval)
      • Glif
        • Glif(Claude+SD3)
        • Glif (Text-to-Sticker)
        • Glif (Text-to-Graffiti)
        • Glif (Text-to-Wojak Comic)
        • Glif (Text-to-Lego)
      • Flux
        • Official API
          • Generate
          • Finetune
          • Result
        • Flux-Ultra(v1.1)
        • Flux-Pro
        • Flux-Pro(v1.1)
        • Flux-Dev
        • Flux-Schnell
        • Flux-Realism
        • Flux-Lora
        • Flux-General
        • Flux-General-Inpainting(Advanced Customization)
        • Flux-Lora-Training(Training Lora)
        • Flux-Lora-Training(Fetch Results Asynchronously)
        • Flux-1-Krea(Image Generation)
        • Flux-1-Krea-Redux(Image-to-Image Generation)
        • Flux-1-SRPO(Image-to-Image Generation)
      • Ideogram
        • Generate(subject reference)
        • Generate(Text-to-image V3)
        • Generate(Text-to-image)
      • Recraft
        • Recraft-V3(Text to Image)
        • Create-Style(Customized Styles)
        • Recraft-20B(Image Generation)
      • Luma
        • Luma-Photon(Image generation)
        • Luma-Photon-Flash(Fast image generation)
      • Doubao
        • Generations(Seedream 4.0)
        • Generations (Jimeng Image Generation)
        • Generations(SeedEdit 3.0)
        • Drawing(Doubao image generation)
      • Google
        • gemini-2.5-flash-image-preview (Original Format - Text-to-Image)
        • gemini-2.5-flash-image-preview (Original Format - Image Editing)
        • gemini-2.5-flash-image-preview (Pay-per-Use - Text-to-Image)
        • gemini-2.5-flash-image-preview-edit (Pay-per-Use - Image Editing)
        • gemini-2.5-flash-image-preview (asynchronous per-request billing - text-to-image)
        • gemini-2.5-flash-image-preview-edit (asynchronous per-request billing - image editing)
        • gemini-2.5-flash-image-preview (asynchronous result retrieval)
        • Imagen-4-Preview (Image generated)
        • Imagen-3 (Image generated)
        • Imagen-3-Fast (Image generated)
        • Imagen-4-Preview-Fast (Image Generation)
        • Imagen-4-Preview-Ultra (Image Generation)
      • Minimax
        • image(Text-to-Image Generation)
      • ZHIPU
        • image(Text-to-Image Generation)
      • Baidu
        • iRAG(Text-to-Image Generation)
      • Hidream
        • Hidream-i1-full(Advanced Version)
        • Hidream-i1-dev(Intermediate Version)
        • Hidream-i1-fast(Entry-Level Version)
      • Bagel
        • Bagel(Image generation)
      • SiliconFlow
        • Create Image Generation Request
      • Higgsfield
        • Soul (Text to Image)
        • Character (Generate Character)
        • Apps (Image-to-Image)
        • Fetch (Retrieve task results)
      • Kling
        • Images-Generations (Image Generation)
        • Fetch (Get Generated Image Task Result)
      • Tongyi Wanxiang
        • T2I (Text-to-Image Alibaba Cloud)
        • Qwen-Image (Alibaba Cloud Deployment)
        • Tasks (Retrieve Task Results)
      • Vidu
        • Reference to Image (Reference2Image)
        • Fetch V2 (Fetch task results)
    • Image Processing
      • 302.AI
        • Upscale
        • Upscale-V2
        • Upscale-V3
        • Upscale-V4
        • Super-Upscale
        • Super-Upscale-V2
        • Face-upscale
        • Colorize
        • Colorize-V2
        • Removebg
        • Removebg-V2
        • Removebg-V3
        • Inpaint
        • Erase
        • Face-to-many
        • Llava
        • Relight
        • Relight-background
        • Relight-V2
        • Face-swap-V2
        • Fetch
        • HtmltoPng
        • SvgToPng
        • image-translate
        • image-translate-query
        • image-translate-redo
        • Flux-selfie
        • Trellis(Image to 3D model)
        • Pose-Transfer(Human Pose Transformation)
        • Pose-Transfer(Human Pose Transformation Result)
        • Virtual-Tryon
        • Virtual-Tryon(Fetch Result)
        • Virtual-Tryon (Virtual Clothing V2)
        • Denoise(AI Denoising)
        • Deblur(AI Deblurring)
        • SAM(AI-generated mask image)
        • Retouch(Portrait beautification)
        • Moondream2 (Image Prompt Generation)
        • Image_Merge
        • Qwen-Image-Edit
        • Qwen-Image-Edit-Plus (Image Editing)
        • Qwen-Image-Edit-Plus (Image Editing Result)
      • 302.AI-ComfyUI
        • Create Outfit Change Task
        • Create Outfit Change Task (Upload Mask)
        • Query Outfit Change Task Status
        • Create Face Swap Task
        • Query Face Swap Task Status
        • Create a Task to Replace Any Item
        • Create Object Replacement Task (Upload Mask)
        • Check the Status of Any Object Replacement Task
        • Create a Task to Transform Cartoon Characters into Real People
        • Query the status of the task to turn a manga character into a real person
        • Create Style Transfer Task
        • Query the status of the style transfer task
        • Create Image Removal Task
        • Query Image Removal Task Status
        • Create Video Face Swap Task
        • Query Video Face Swap Task Status
        • 创建视频换脸任务(V2)
        • 查询视频换脸任务状态(V2)
      • Vectorizer
        • Vectorize
      • Stability.ai
        • Fast Upscale
        • Creative Upscale
        • Conservative Upscale
        • Fetch
        • Erase
        • Inpaint
        • Outpaint
        • Search-and-replace
        • Search-and-recolor
        • Remove-background
        • Sketch
        • Structure
        • Style
        • Replace-Background
        • Stable-Fast-3D
        • Stable-Point-3D(Image to 3D Model Conversion -New Version)
        • Style-Transfer
      • Glif
        • Glif(Portrait Photo Stylization)
        • Glif(Photo-to-Sculpture)
        • Glif(Photo Pixelation)
        • Glif(Logo Materialization)
        • Glif(Image-to-GIF)
      • Clipdrop
        • Cleanup
        • Upscale
        • Remove-background
        • Uncrop
      • Recraft
        • Vectorize Image
        • Remove Background
        • Clarity Upscale
        • Generative Upscale
      • BRIA
        • Remove Background
        • Blur Background
        • Generate Background
        • Erase Foreground
        • Eraser
        • Expand Image
        • Increase Resolution
        • Crop
        • Cutout
        • Packshot
        • Shadow
        • Scene
        • Caption
        • Register
        • Mask
        • Presenter info
        • Modify Presenter
        • Delayer Image
      • Flux
        • Official API
          • Generate(Image Edit)
          • Result(Query Task)
        • Flux-V1.1-Ultra-Redux(Image-to-image generation-Ultra)
        • Flux-V1.1-Pro-Redux(Image-to-image generation-Pro)
        • Flux-Dev-Redux(Image-to-image generation-Dev)
        • Flux-Schnell-Redux(Image-to-image generation-Schnell)
        • Flux-V1-Pro-Canny(Object consistency)
        • Flux-V1-Pro-Depth(Depth consistency)
        • Flux-V1-Pro-Fill(Partial repainting)
        • Flux-Kontext-Pro(Image Edit)
        • Flux-Kontext-Max(Image Edit)
        • Flux-Kontext-Dev(Image Edit)
      • Hyper3D
        • Hyper3d-Rodin(Generate 3D models)
        • Hyper3d-Rodin(Obtain task results)
      • Tripo3D
        • Task(Task Submission)
        • Upload(Image Upload)
        • Fetch
      • FASHN
        • Fashn-Tryon(Virtual Try-On)
        • Fashn-Tryon(Virtual Try-On v1.5)
      • Ideogram
        • Edit(subject reference)
        • Remix(subject reference)
        • Edit(Image EditionV3)
        • Remix(Image to ImageV3)
        • Reframe(Image ExtensionV3)
        • Replace Background(V3)
        • Remix(Image to Image)
        • Upscale(Image Upscaling)
        • Describe(Image Description)
        • Edit(Image Edition)
      • Doubao
        • SeedEdit(Image Command Editing)
        • Character(Character Feature Preservation)
        • SeedEdit_v3.0 (Image Command Editing)
        • SeedEdit_v3.0 (Result Acquisition)
        • Portrait (Portrait Photography)
        • Portrait (Result Acquisition)
      • Kling
        • Virtual-Try-On
        • Fetch(Get Task Result)
        • Images-expand
        • Fetch(Retrieve the results of the image upscaling task)
      • StepFun
        • Step1x-Edit(Modify Image)
      • Bagel
        • Bagel-Edit(Image Edit)
      • Gongji Computing
        • Flux Dev
          • Create flux_dev text-to-image task
          • Query flux_dev text-to-image task
        • Flux Kontext Dev
          • Create flux_kontext_dev image editing task
          • Query flux_kontext_dev image editing tasks
          • Create LoRA Image Editing Task
          • View LoRA Image Editing Task
        • Face Swapper
          • Create face_swapper task
          • Get face_swapper task
        • Clothes Changer
          • Create clothes changer task without mask
          • Get clothes changer task without mask
          • Create clothes changer task with mask
          • Get clothes changer task with mask
        • Anything Changer
          • 创建无遮罩换任意物品任务
          • 查看无遮罩换任意物品任务
          • 创建有遮罩换任意物品任务
          • 查看有遮罩换任意物品任务
        • style_transfer
          • 创建风格迁移任务
          • 查看风格迁移任务
        • Image Eliminater
          • Create image removal task
          • View image removal task
        • Video Face Swapper
          • Create video face swap task
          • View video face swap task
      • Image2Reality
        • 创建动漫任务变真人任务
        • 查看动漫任务变真人任务
      • Hunyuan3D
        • Hunyuan3d-v21 (Generate 3D Model)
        • Hunyuan3d-v21 (Get Task Result)
      • Hidream
        • Hidream-E1 (Image Editing)
      • Tongyi Wanxiang
        • Qwen-Image-Edit (Alibaba Cloud Deployment)
        • Wanx2.1-ImageEdit (Image Editing)
        • Wan2.5-i2i-Preview (Image Editing)
        • Qwen-MT-Image (Image Translation)
        • Tasks (Get Task Results)
      • Topazlabs
        • Sharpen
        • Enhance
        • Denoise
        • Restore
        • Lighting
        • Get Task Results
        • Download
    • Video Generation
      • Unified Interface
        • Explanation
        • 302 Format V1
          • Create Video Generation Task
          • Get Video Task Info
        • 302 Format V2
          • Create Video Generation Task
          • Get Video Task Info
          • Webhook Request Example on Success
      • 302.AI
        • Image-to-video
        • Live-portrait
        • Video-To-Video
        • Fetch
        • Latentsync (Open source digital person)
        • Latentsync (get task results)
        • Upscale-Video(Video Enhancement)
        • Upscale-Video(Get Video Results)
        • Stable-Avatar (Open Source Digital Human)
        • Stable-Avatar (Get Task Results)
        • Wan-2.2-i2v-fast(Wan2.2 Fast Version)
        • Wan-2.2-i2v-fast (Get Video Result)
      • Stable Diffusion
        • Image-to-video
        • Fetch Image-to-video
      • Luma AI
        • Submit(Text / Image to Video)
        • Extend(Video)
        • Fetch
      • Runway
        • Submit(Text to Video)
        • Submit(Image to Video)
        • Submit(Image to Video Rapid)
        • Submit(Image-to-Video Generation with Gen4)
        • Submit(Image to Video Generation Gen4-Turbo)
        • Submit(Video to Video)
        • Submit(Video to Video Rapid)
        • Act-two(Video Style Transfer)
        • Submit(Video extension)
        • Aleph (Video Editing)
        • Fetch
      • Kling
        • 302 format
          • Text to Video
            • Txt2Video(Text to Video 1.0 Rapid-5s)
            • Txt2Video_HQ(Text to Video 1.5 HQ-5s)
            • Txt2Video_HQ(Text to Video 1.5 HQ-10s)
            • Txt2Video(Text to Video 1.6 Standard-5s)
            • Txt2Video(Text to Video 1.6 Standard-10s)
            • Txt2Video(Text to Video 1.6 HQ-5s)
            • Txt2Video(Text to Video 1.6 HQ-10s)
            • Txt2Video(Text-to-Video 2.0 – HD – 5s)
            • Txt2Video(Text-to-Video 2.1 – Master Edition – 5S)
            • Txt2Video(Text-to-Video 2.1 – Master Edition – 10S)
            • Txt2Video(Text-To-Video-2.5-Turbo-5S)
            • Txt2Video(Text-To-Video-2.5-Turbo-10S)
          • Image to Video
            • Image2Video(Image to Video 1.0 Rapid-5s)
            • Image2Video(Image to Video 1.0 Rapid-10s)
            • Image2Video(Image to Video 1.5 Rapid-5s)
            • Image2Video(Image to Video 1.5 Rapid-10s)
            • Image2Video_HQ(Image to Video 1.5 HQ-5s)
            • Image2Video_HQ(Image to Video 1.5 HQ-10s)
            • Image2Video(Image to Video 1.6 Standard-5s)
            • Image2Video(Image to Video 1.6 Standard-10s)
            • Image2Video(Multiple Images Reference)
            • Image2Video(Image to Video 1.6 HQ-5s)
            • Image2Video(Image to Video 1.6 HQ-10s)
            • Image2Video(Image-to-Video 2.0 – HD – 5s)
            • Image2Video(Image-to-Video 2.0 – HD – 10s)
            • Image2Video(Image video 2.1-5 seconds)
            • Image2Video(Image video 2.1-10 seconds)
            • Image2Video(Image Video 2.1-HD-10 seconds)
            • Image2Video(Image Video 2.1-HD-5 seconds)
            • Image2Video(Image to Video 2.1–Master –5seconds)
            • Image2Video(Image to Video 2.1–Master–10seconds)
            • Image2Video(Image-to-Video2.5-Turbo-5S)
            • Image2Video(Image-to-Video2.5-Turbo-10s)
          • Extend_Video
          • Fetch
        • Official format
          • Text2video (Text-to-Video Official API)
          • Text2video (Text-to-Video Get Task Result)
          • Image2video (Image-to-Video Official API)
          • Image2video (Image-to-Video Get Task Result)
          • MultiImage2Video(Multiple Images Reference)
          • MultiImage2Video(Get Multi-Image Video Task Result)
          • Effects(Video Effects Official API)
          • Effects(Get Video Effects Task Result)
      • CogVideoX
        • Generations (text-generated video)
        • Generations(Image-generated video)
        • Generations (Video Generation from Start and End Frames)
        • Results (get task results)
      • Minimax
        • Video(Text-to-Video)
        • Video (Image-to-Video Generation)
        • Video(Based on Subject Reference)
        • Video (Camera Movement Control)
        • Video(MiniMax-Hailuo-02)
        • Query(Result)
        • Files(Video Download)
      • Pika
        • 1.5 pikaffects(Image-to-Video Generation)
        • Turbo Generate(Text-to-Video Generation)
        • Turbo Generate(Text-to-Video Generation)
        • 2.1 Generate(Text-to-Video Generation)
        • 2.1 Generate(Image-to-Video Generation)
        • 2.2 Generate(Text-to-Video Generation)
        • 2.2 Generate(Image-to-Video Generation)
        • 2.2 Pikascenes(Generate scene videos)
        • Fetch(Result)
      • PixVerse
        • Pixverse Special Effect ID
        • Pixverse Sound Effect ID
        • Generate(Text-to-Video Generation)
        • Generate(Image-to-Video Generation)
        • Generate(Multi-Subject Reference)
        • Fetch
        • Lipsync (Submit lip-sync task)
        • Lipsync (Get lip-sync task result)
      • Genmo
        • Mochi-v1 (Get task results)
        • Mochi-v1(Text to Video)
      • Hedra
        • 2.0
          • Audio(Upload)
          • Portrait(Upload)
          • Characters(lip-synthesis)
          • Fetch(Result)
        • 3.0
          • List Models(Get a list of models)
          • Create Asset(Resource creation)
          • Upload Asset(Resource upload)
          • Generate Asset(Resource Synthesis)
          • Get Status(Get resource synthesis results)
      • Haiper
        • Haiper(Text to Video)
        • Haiper(Image to Video)
        • Haiper(Text to Video V2.5)
        • Haiper(Image to Video V2.5)
        • Haiper(Fetch Task Result)
      • Sync.
        • Generate
        • Fetch
      • Lightricks
        • Ltx-Video
        • Ltx-Video-I2V
        • Ltx-Video-v095(Text-to-video generation)
        • Ltx-Video-v095-I2V(Image-to-Video Generation)
      • Hunyuan
        • Hunyuan(Text-to-Video)
        • Hunyuan(Obtain Task Results)
      • Vidu
        • Vidu(Text-to-Video)
        • Vidu(Image to Video)
        • Vidu(Generate video from the first and last frames)
        • Vidu(Reference-based video generation)
        • Vidu(Generate scene video)
        • Vidu(Smart Ultra HD)
        • Fetch(Retrieve Task Results)
        • Vidu V2(Text-to-Video Generation)
        • Vidu V2(Image-to-Video Generation)
        • Vidu V2(First-and-Last-Frame Video Generation)
        • Vidu V2(Subject-Driven Video Generation)
        • Vidu(Scene Video Generation V2)
        • Vidu V2(AI Ultra HD – Premium)
        • Fetch V2(Retrieve Task Result)
      • Tongyi Wanxiang
        • wan2.2-a14b-t2v (Text to Video)
        • wan2.2-a14b-t2v (Get Task Result)
        • wan2.2-5b-t2v (Text to Video)
        • wan2.2-5b-t2v (Get Task Result)
        • T2V (Text-to-Video Alibaba Cloud)
        • wan-t2v(Text-to-video open source version)
        • wan-t2v(Fetch Task Result)
        • wan-vace(Fetch Task Result)
        • wan-vace(Video Edit)
        • wan2.2-animate-move(Image-to-Motion)
        • wan2.2-s2v(Digital Human Generation)
        • wan2.2-animate-mix (Video replacement)
        • Tasks(Fetch Task Result)
        • I2V (Image-to-Video Alibaba Cloud)
        • wan2.2-a14b-i2v (Image to Video)
        • Tasks (Get Task Results)
        • wan2.2-a14b-i2v (Get Task Result)
        • wan-i2v(Image-to-video open source version)
        • wan-i2v(Fetch Task Result)
        • wan2.2-5b-i2v (Image to Video)
        • wan2.2-5b-i2v (Get Task Result)
      • Jimeng
        • Seaweed (Text/picture generated video)
        • Seaweed (Fetch Task Results)
        • Seedance (Text/picture generated video)
        • Seedance (Video Generation from First and Last Frames)
        • Seedance (Reference-based Video Generation)
        • Seedance (Fetch Task Results)
        • Omnihuman(Submits Task)
        • Omnihuman(Get Task Results)
      • SiliconFlow
        • Video (Video Generation)
        • Tasks(Fetch Task Result)
      • Google
        • Veo3-Fast(Text-to-video)
        • Veo3-Fast(Get task result)
        • Veo3-Fast-Frames(Image and Text to Video Generation)
        • Veo3-Fast-Frames (Get task result)
        • Veo3-Pro(Text-to-video)
        • Veo3-Pro(Get task result)
        • Veo3-Pro-Frames(Image and Text to Video Generation)
        • Veo3-Pro-Frames(Veo3-Pro-Frames)
        • Veo2(Text-to-video)
        • Veo2-i2v(Image to video generation)
        • Veo2(Get task results)
        • Veo3 (Text-to-video)
        • Veo3 (Get task result)
        • Veo3-V2(V2 API Format)
        • Get Task(V2 API Format)
      • Kunlun Tech
        • Skyreels(Image to Video)
        • Skyreels(Get task results)
      • Higgsfield
        • Image-to-Video Template
        • Offical Format
          • Motions (Get Template List)
          • Generate (Official Image-to-Video Generation)
          • Speak (Digital Human Generation)
          • Fetch (Get Task Results)
        • Generate(Image to Video)
        • Shortads(Image-Generated Advertising Video)
        • Apps (Image-to-Video)
        • Fetch (Get Task Results)
      • Chanjing
        • Create a video synthesis task
        • Retrieve video details
        • Delete video
        • Retrieve the list of supported fonts
        • Generate a digital human avatar
        • Retrieve avatar details
        • Delete avatar
        • Public digital human list
      • Midjourney
        • MJ-Video(Image to Video)
        • MJ-Video(Video Extension)
        • Fetch(Fetch Task)
      • Topview
        • Marketing Digital Avatar
          • Submit Avatar Marketing Video
          • Get Avatar Marketing Video Results
          • Get Script List
          • Modify Script Content
        • Regular Digital Avatar
          • VideoAvatar Submit
          • VideoAvatar Query
          • Create Private Digital Avatar
          • Query Private Digital Avatar
          • Delete Private Digital Avatar
          • Query Public Digital Avatar
          • Query Public Voices
          • Query Subtitle Style Interface
        • Product Digital Avatar
          • Product ImageReplace Submit
          • Product ImageReplace Query
          • Product Image2Video Submit
          • Product Image2Video Query
          • Query Public Digital Avatar
          • Query Product Categories
        • Product Image Replacement
          • productAnyShoot ReplaceImage Submit
          • productAnyShoot ReplaceImage Query
          • Query Template List
          • Query Template Categories
        • Image to Video
          • Submit Image2video (Image to Video)
          • Query Image2video (Image to Video)
        • Avatar 4
          • Submit Digital Human Generation Task
          • Get Digital Human Generation Task Result
          • Query Subtitle Style API
          • Query Public Voice Tones
          • Query Available Digital Human List
          • Query Digital Human Category List
          • Create Custom Digital Human
          • Delete Custom Digital Human
          • Create Text-to-Speech Task
          • Query Text-to-Speech Task
        • Upload Interface
      • OpenAI
        • Chat(Video generation)
        • Sora2(Asynchronous request)
        • Sora2(Get task result)
    • Audio/Video Processing
      • Unified interface
        • TTS
          • 302 Format V1
            • Text-to-Speech Generation (302 Format)
          • 302 Format V2
            • Text-to-Speech Generation (302 Format)
            • Webhook Request Example on Success
            • Query TTS Task
          • Openai Format
            • Text-to-Speech Generation (Openai Format)
          • Query TTS Provider Info
      • 302.AI
        • IndexTTS-2
          • Create TTS Task
          • Query Task
        • Higgs Audio
          • Create Voice Cloning Task
          • View Voice Cloning Tasks
          • Create Smart Voice Generation Task
          • View Smart Voice Generation Tasks
        • F5-TTS
          • F5-TTS(Text to Speech)
          • F5-TTS (Asynchronous Text-to-Speech)
          • F5-TTS (Asynchronously Retrieve Results)
        • MMAudio
          • mmaudio(Text-to-Speech)
          • mmaudio(AI Video Voiceover)
          • mmaudio (Asynchronous Result Retrieval)
        • Stable-Audio(instrumental generation)
        • Transcript (Audio/Video to Text)
        • Transcriptions(Speech to Text)
        • Alignments(Subtitle Timing)
        • WhisperX
        • Diffrhythm(Song Generation)
        • Video-Understanding (Video understanding)
        • Video-Understanding (Asynchronously get result)
      • OpenAI
        • Speech(Text to Speech tts-1)
        • Transcriptions(Speech to Text whisper-1)
        • Translations(Speech to English Text whisper-1)
        • Realtime
      • Azure
        • AzureTTS(Text to Speech)
        • Voice-List
      • Suno
        • Music(Automatic Mode)
        • Music(Custom Mode)
        • Music(Generate Lyrics)
        • Music(Song Continuation)
        • Fetch
      • Doubao
        • tts_hd(Text to Speech)
        • vc-ata(Automatic subtitle timing)
        • fetch(Query Generation Status)
        • vc(Audio and video caption generation)
        • fetch(Query caption result)
        • Recognize (Rapid Audio File Recognition)
      • Fish Audio
        • TTS(Text to Speech)
        • Model(Create Voice)
        • Model(Obtain Voice)
        • Model(Delete Voice)
        • Model(Update Voice)
        • Model(Get Voice List)
      • Minimax
        • T2A(Speech Generation - Synchronous)
        • T2A(Async extra content generation)
        • T2A(Status Inquiry)
        • T2V(Create Voice)
        • Files(Audio File Download)
        • Music Generation API
        • Upload
        • Voice Clone
      • Dubbingx
        • TTS(Text to Speech)
        • GetTTSList(Get Voice List)
        • GetTTSTask(Get Task Status)
        • Analyze(emotions)
      • Udio
        • Generate(Music Generation)
        • Generate(Music Continuation)
        • Query
      • Elevenlabs
        • 302 Format
          • Speech-to-text(Speech-to-Text)
          • Speech-to-text(Asynchronously fetch results)
          • TTS-Multilingual-v2(文字转语音同步)
          • TTS-Multilingual-v2(Text-to-Speech)
          • TTS-Multilingual-v2(Asynchronous result retrieval)
          • TTS-Flash-v2.5(文字转语音同步)
          • TTS-Flash-v2.5(Text-to-Speech)
          • TTS-Flash-v2.5(Asynchronous result retrieval)
        • Official Format
          • Text-to-speech
          • Speech-to-text
          • Text-to-Dialogue (Create Multi-person Dialogue)
          • Music (Music Generation)
          • Models (Get Models)
          • Voices(Get Voices)
      • Mureka
        • Upload Music
        • Generate Lyrics from a Prompt
        • Continue writing lyrics from existing lyrics
        • Generate a Song from Lyrics
        • Retrieve the Generated Song
        • Separate Music Stems
        • Generate Instrumental Music Track
        • Retrieve Instrumental Music Track
        • Text-to-Speech
        • Create Podcast Audio
      • SiliconFlow
        • Upload reference audio
        • Delete reference audio
        • Create speech-to-text request
        • Create text-to-speech request
        • FunAudioLLM/CosyVoice2-0.5B TTS
        • fnlp/MOSS-TTSD-v0.5 TTS
      • Google
        • Text-to-Speech
        • gemini-2.5-flash-preview-tts
        • gemini-2.5-pro-preview-tts
      • Chanjing
        • Create a language generation task
        • Retrieve speech synthesis results
        • Create a voice customization task
        • Retrieve voice customization results
        • Delete customized voice
      • Kling
        • Video-to-Audio (Video Sound Effects Generation)
        • Video-to-Audio (Get Task Results)
        • Text-to-Audio (Text to Sound Effects)
        • Text-to-Audio (Get Task Results)
      • Tongyi Wanxiang
        • Qwen-TTS (Speech Synthesis)
        • Qwen3-TTS-Flash(Speech Synthesis)
      • Topazlabs
        • Video enhancement to high definition
        • Retrieve task result
      • Stability
        • Text-to-Audio (Text-generated Music)
        • Audio-to-Audio (Reference-based Music Generation)
        • Inpaint (Music Editing/Modification)
    • Information Processing
      • Unified Search API
        • Unified Search API
      • 302.AI
        • Admin Dashboard
          • Balance(Account balance)
          • Price(Get API Pricing)
          • Retrieve User API Keys List Data
          • Retrieve Data for Specified API Key
          • Create API Key
          • Update API Key
          • Delete API Key
        • Information search
          • Xiaohongshu_Search
          • Xiaohongshu_Search (Xiaohongshu Notes Search V2)
          • Xiaohongshu_Search (Xiaohongshu Notes Search V3)
          • Xiaohongshu_Note (Xiaohongshu Note Retrieval)
          • Xiaohongshu_Note (Xiaohongshu Note Retrieval V2)
          • Xiaohongshu_Note (Xiaohongshu Note Retrieval V3)
          • Xiaohongshu_Comments
          • Get_Home_Recommend
          • Tiktok_Search
          • Douyin_Search
          • Twitter_Search
          • Twitter_Post(X_Post)
          • Twitter_User(X_User)
          • Weibo_Post
          • Search_Video
          • Youtube_Info
          • Youtube_Subtitles(Youtube Obtain Subtitles)
          • Bilibili_Info(Bilibili Obtain Video Information)
          • MP_Article_List(Get the list of WeChat official account articles)
          • MP_Article(Retrieve WeChat Official Account articles)
          • Zhihu_AI_Search (Zhihu AI Search)
          • Zhihu_AI_Search (Retrieve Zhihu AI Search Results)
          • Zhihu_Hot_List (Zhihu Hot List / Trending Topics)
          • Video_Data (Retrieve Video Data)
        • File processing
          • Parsing
          • Upload-File
          • Markitdown (File conversion to md format)
        • Code execution
          • Virtual Machine Sandbox
            • One-click Code Execution
            • Create Sandbox
            • Query Your Sandbox List
            • Destroy Sandbox
            • Run-Code
            • Run Command Line
            • Query File Information at Specified Path
            • Import File Data into Sandbox
            • Export Sandbox Files
          • Static Sandbox
            • Run-Code
          • E2B SDK Invocation
            • E2B SDK
        • Remote Browser
          • Asynchronously create browser automation tasks
          • Create Browser Automation Task
          • Query Browser Task Status
        • Paper2Code
          • Create paper2poster task (pass parameters via JSON)
          • Create Paper2Code Task
          • Query Paper2Code Task
        • Paper2Poster
          • Create a paper2code task (pass parameters in JSON)
          • Create paper2poster Task
          • Query paper2poster Task
        • LLMxMapReduce
          • Create Writing Task
          • Query Writing Task
        • LangExtract
          • Create information extraction task
          • View information extraction task
        • Dots.OCR
          • Create dots.ocr Task
          • View dots.ocr Task
        • MiniCPM
          • Create MiniCPM-V 4.5 Task
          • View MiniCPM-V 4.5 Task
        • PDF Translation
          • Submit PDF Translation Task
          • Check PDF Translation Task
      • Tavily
        • Search
        • Extract
      • SerpApi
        • Search
        • Search(News)
        • Search(Images)
        • Search(Lens)
        • Search(Videos)
        • Search(Scholar)
        • Search(Patents)
        • Search(Baidu)
      • Search1API
        • Search
        • News
        • Crawl
        • Sitemap(Site Map)
        • Trending (Popular Trends)
      • Exa
        • Search
        • Contents(Get content)
        • Answer
      • Bocha AI
        • Web-search
        • Ai-search
      • Doc2x
        • Version 2
          • PDF(Upload - Asynchronous)
          • Status(View Status)
          • Parse(Request Export File - Asynchronous)
          • Result(exported results)
        • Version 1 (Deprecated)
          • PDF(PDF-to-MD)
          • PDF-Async
          • IMG-to-MD
          • IMG-Async
          • Status
          • Export
      • Glif
        • Glif(Bot)
      • Jina
        • Reader(Web Page to Markdown)
        • Search
        • Grounding(Verification of Facts)
        • Classify
      • DeepL
        • Chat(Translate into English)
        • Chat(Translate into Chinese)
        • Chat(Translate into Japanese)
        • Translate(Translate into various language)
      • RSSHub
        • RSSHub
      • Firefly card
        • saveImg(Card Generation)
      • Youdao
        • Youdao(Youdao Translate)
      • Mistral
        • OCR(PDF Parsing)
      • Firecrawl
        • Scrape
        • Batch Scrape
        • Get Batch Scrape Status
        • Get Batch Scrape Errors
        • Map
        • Search
      • MetaSota Search
        • Search
        • Reader
        • Chat
      • MinerU
        • Create PDF Parsing Task (Open Source Deployment Version)
        • View PDF Parsing Task (Open Source Deployment Version)
        • Create PDF Parsing Task (Official Free Version)
        • View PDF Parsing Task (Official Free Version)
      • Zhipu Agent
        • Zhipu PPT Creation
        • Zhipu PPT Export
      • Unifuncs
        • Web-Search (Real-time Search)
        • Web-Reader (Webpage Reading)
      • Sophnet
        • Image Recognition
        • Document Recognition
      • Doubao
        • Doubao-Seed-Translation
      • Perplexity
        • Search
      • Aminer
        • Academic Q&A
          • Paper Q&A Search
          • AMiner Meditation
        • Data Acquisition
          • Journal Papers
          • Institution Details
          • Patent Details
          • Paper Details
          • Scholar Portrait
          • Scholar Details
          • Paper Citations
          • Scholar Papers
          • Scholar Patents
          • Paper Information
          • Patent Information
          • Institution Papers
          • Institution Scholars
          • Institution Patents
          • Journal Details
        • Data Disambiguation
          • Institution Disambiguation Pro
          • Institution Disambiguation
        • Data Query
          • Journal Search
          • Institution Search
          • Patent Search
          • Paper Search
          • Paper Search Pro
          • Scholar Search
        • Composite Interface
          • Get Paper Details by Conditions
            GET
          • Paper Search API
            GET
          • Paper Batch Query API
            GET
    • RAG-related
      • OpenAI
        • Embeddings
      • Jina
        • Embeddings
        • Rerank
        • Rerank(Multimodal Reordering)
        • Tokenizer
      • China Model
        • Embeddings(Zhipu)
        • Embeddings(BAAI)
        • Embeddings(Baichuan AI)
        • Embeddings(Youdao)
        • Rerank(Youdao)
        • Rerank(BAAI)
      • 302.AI
        • Chat(with KB)
        • Chat(with KB-OpenAI compatible)
        • Create(Knowledge Base)
        • Delete(Knowledge Base)
        • Upload
        • List(KB)
        • Info
        • Meta-Chunking(Text LLM slices)
        • Meta-Chunking(File LLM slices)
      • SiliconFlow
        • Embeddings
        • Rerank
      • Google
        • Embeddings
    • Tools API
      • AI Video Creation Hub
        • Scripts(Generate Video Content Copy)
        • Terms(Generate Video Material Search Keywords)
        • Videos(Create Video Material Generation Task)
        • Tasks(Get Video Task Progress)
      • AI Paper Writing
        • CO-STORM
          • Create generate article task
          • Continue to generate dialogue interfaces
          • Update article content interface
          • Get article information
        • Asynchronous Paper Generate
        • Fetch
      • AI Podcast Production
        • Asynchronous Generate Podcast Transcripts
        • Check the status of podcast text generation task
        • Asynchronously Generate Podcast Audio
        • Check the status of podcast audio generation task
      • AI Writing Assistant
        • Get Tools‘ List
        • Generate Copywriting
      • AI Video Real-Time Translation
        • Query Video Information
        • Video Download
        • Extract Audio from Video
        • Audio vocal separation and transcription
        • Subtitle Translation
        • Video Burning
        • Original sound clone
        • Query task status
      • AI Document Editor
        • Generate a long text outline
        • Generate article content
      • Web Data Extraction Tool
        • Generate Schema
        • Create an extraction task
        • Query extraction progress
      • AI Prompt Expert
        • Prompt Optimization
        • Image prompt generation
        • Create SPO Prompt Optimization Task
        • Query SPO Prompt Optimization Results
      • AI 3D Modeling
        • 3D model file type conversion
      • AI Search Master 3.0
        • AI Search
      • AI Vector Graphics Generation
        • SVG to video
      • Al Answer Machine
        • Answer
      • AI PPT Generator
        • Generate PPT interface with one click
        • File parsing
        • Generate an outline
        • Generate outline content
        • Get template options
        • Generate PPT interface (synchronous interface)
        • Load PPT data
        • Generate PPT interface (asynchronous interface)
        • Asynchronous query generates PPT status
        • Download PPT
        • Add/update custom PPT templates
        • Pagination query PPT template
      • AI Academic Paper Search
        • arxiv Paper Search
        • Google Paper Search
      • One-Click Website Deployment
        • Create Hosted Webpage (Form Parameter API)
        • Create Hosted Webpage (JSON Parameter API)
        • Create Hosted Webpage (Binary Parameter API)
        • Query the List of Hosted Projects under an API Key
      • AI Avatar Maker
        • Generate Avatar (JSON Parameter Example)
        • Avatar Generation (form-data parameter example)
      • AI Card Generation
        • Generate Knowledge Card
        • Generate Poster
        • Generate philosophical cards
        • Generate philosophical quotation sayings
        • 生成知识卡片
      • AI Image Creative Station API
        • nable asynchronous request example (It is recommended to use asynchronous requests to generate images. Image generation models take a long time, and using asynchronous mode can help reduce request timeout issues.)
        • Usage Example
          • Basic Text-to-Image (Optional Prompt Optimization)
          • Style Modification
          • English Word Flashcards
          • Visual Recipe
          • Physical Destruction Effect Card
          • Product Model Image
          • Passport Stamp Generator
          • Themed Keycap Scene Generation
          • Low Polygon
          • Typography
          • Sculpture Generation
          • Isometric Miniature Scene Generation
          • Unfolded Ancient Book Miniature Scene Generation
          • City Isometric View Generation
          • Blister Tablet Food Generation
          • Chibi-style 3D character creation
          • 3D Relief Papercut Style Generation
          • Change Character Age
          • Movable Doll Generation
          • 3D avatar pose generation
          • Clay Style Generation
          • 3D stereoscopic model creation
          • Character Dual Exposure
          • Hand-drawn Style Infographic Card
          • Ghibli
          • LEGO Collection
          • CrystalBall
          • Microscopic World
          • Sticker Design
          • Journal Notes
          • Cloud Art
          • Miniature 3D building
          • Fictional Tweet Screenshot Prompt Optimization
          • Cute Enamel Pin Image
          • Ultra-Realistic Figurine Image
          • Brand Pill Chart
          • Original Product Image
          • AlphabetBox
          • Plastic Garbage Bag
          • 3D scroll miniature scene
          • Silhouette Art
          • Colorful Vector Art Poster
          • Retro Promotional Poster
          • Fashion Magazine Cover
          • Mini Tilt-Shift Landscape
          • Chibi-style keychain
          • 3D miniature shop
          • Nail Painting
          • Pin on T-shirt
          • LEGO City Attractions
          • Word and Graphic Fusion
          • 3D chromed badge
          • Animal Landmark Selfie
          • Custom Anime Figure
          • Frosted Glass Silhouette
          • Rusty Iron Plate
          • FlowInk
          • Neon Graffiti
          • Claw Machine
          • Creative Minimalist Ad
          • Glass Shard
          • Creative Drawstring Bag
          • Floral Sculpture
          • Succulent Planter
          • Retro Sci-Fi Book Cover
          • Gold Coin
          • Emotion Pastry
          • Fun Balloon
          • MonsterLetter
          • City in Toy Box
          • 3D Doll
          • Clothing Flat Lay
          • Anime to Real Person
        • Get Model List
        • Generate Creative Images
        • Get Image Generation Result Asynchronously
      • AI Digital Human
        • Submit Video Processing Request
        • Query Audio Extraction Task Info
        • Query Video Merging Task Info
        • Video Merging Webhook Request Example
        • Audio Extraction Webhook Request Example
    • Help Center
      • HTTP Status Codes
      • List of supported languages for image translation
  1. Composite Interface

Paper Search API

GET
/aminer/gateway/open_platform/api/paper/list/by/search/venue
价格:0.05 PTC/次

Request

Query Params

Header Params

Request Code Samples

Shell
JavaScript
Java
Swift
Go
PHP
Python
HTTP
C
C#
Objective-C
Ruby
OCaml
Dart
R
Request Request Example
Shell
JavaScript
Java
Swift
curl --location --request GET 'https://api.302.ai/aminer/gateway/open_platform/api/paper/list/by/search/venue?keyword=中国&page=1&size=10&venue&author&order=n_citation' \
--header 'Authorization: Bearer sk-jls4AaVBGoe1GwZD64qZA1qyKTN1MPHa4NmvH1cT68z7K1Zz'

Responses

🟢200成功
application/json
Body

Example
{
    "code": 200,
    "data": [
        {
            "_id": "5e68c5f591e0116bed041477",
            "abstract": "Geologic fractures such as joints and faults are central to many problems in energy geotechnics. Notable examples include hydraulic fracturing, injection-induced earthquakes, and geologic carbon storage. Nevertheless, our current capabilities for simulating the development and evolution of geologic fractures in these problems are still insufficient in terms of efficiency and accuracy. Recently, phase-field modeling has emerged as an efficient numerical method for fracture simulation which does not require any algorithm for tracking the geometry of fracture. However, existing phase-field models of fracture neglected two distinct characteristics of geologic fractures, namely, the pressure-dependence and frictional contact. To overcome these limitations, new phase-field models have been developed and described in this paper. The new phase-field models are demonstrably capable of simulating pressure-dependent, frictional fractures propagating in arbitrary directions, which is a notoriously challenging task.",
            "authors": [
                {
                    "_id": "61b2dda36750f8276edd3a4e",
                    "name": "Jinhyun Choo",
                    "org": "Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Daejeon, South Korea"
                }
            ],
            "doi": "10.1016/j.cma.2020.113265",
            "keywords": [
                "fracture",
                "phase-field model",
                "numerical analysis",
                "computational mechanics",
                "geomaterials"
            ],
            "title": "A Phase-Field Model of Frictional Shear Fracture in Geologic Materials",
            "venue": {
                "raw": "FRONTIERS IN BUILT ENVIRONMENT"
            },
            "volume": "10",
            "year": 2024
        },
        {
            "_id": "6221834e5aee126c0f23c2a5",
            "abstract": "In this paper, we introduce a shallow (one-hidden-layer) physics-informed neural network for solving partial differential equations on static and evolving surfaces. For the static surface case, with the aid of level set function, the surface normal and mean curvature used in the surface differential expressions can be computed easily. So instead of imposing the normal extension constraints used in literature, we write the surface differential operators in the form of traditional Cartesian differential operators and use them in the loss function directly. We perform a series of performance study for the present methodology by solving Laplace-Beltrami equation and surface diffusion equation on complex static surfaces. With just a moderate number of neurons used in the hidden layer, we are able to attain satisfactory prediction results. Then we extend the present methodology to solve the advection-diffusion equation on an evolving surface with given velocity. To track the surface, we additionally introduce a prescribed hidden layer to enforce the topological structure of the surface and use the network to learn the homeomorphism between the surface and the prescribed topology. The proposed network structure is designed to track the surface and solve the equation simultaneously. Again, the numerical results show comparable accuracy as the static cases. As an application, we simulate the surfactant transport on the droplet surface under shear flow and obtain some physically plausible results.",
            "authors": [
                {
                    "_id": "53f39148dabfae4b34a56846",
                    "name": "Wei-Fan Hu",
                    "org": "Natl Cent Univ, Dept Math, Taoyuan 32001, Taiwan"
                },
                {
                    "_id": "6525ed3d55b3f8ac46f8ce95",
                    "name": "Yi-Jun Shih",
                    "org": "Natl Yang Ming Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan"
                },
                {
                    "_id": "5631de9845ce1e5968c3f3d0",
                    "name": "Te-Sheng Lin",
                    "org": "Natl Yang Ming Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan"
                },
                {
                    "_id": "53f47e76dabfaec09f299f92",
                    "name": "Ming-Chih Lai",
                    "org": "Natl Yang Ming Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan"
                }
            ],
            "doi": "10.1016/j.cma.2023.116486",
            "issn": "0045-7825",
            "keywords": [
                "Physics-informed neural networks",
                "Surface partial differential equations",
                "Laplace-Beltrami operator",
                "Shallow neural network",
                "Evolving surfaces"
            ],
            "title": "A Shallow Physics-Informed Neural Network for Solving Partial Differential Equations on Surfaces",
            "venue": {
                "raw": "COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING"
            },
            "volume": "418",
            "year": 2024
        },
        {
            "_id": "623155ac5aee126c0f2ba59f",
            "abstract": "While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date PINNs have not been successful in simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulent behavior. In this work we attribute this shortcoming to the inability of existing PINNs formulations to respect the spatio-temporal causal structure that is inherent to the evolution of physical systems. We argue that this is a fundamental limitation and a key source of error that can ultimately steer PINN models to converge towards erroneous solutions. We address this pathology by proposing a simple re-formulation of PINNs loss functions that can explicitly account for physical causality during model training. We demonstrate that this simple modification alone is enough to introduce significant accuracy improvements, as well as a practical quantitative mechanism for assessing the convergence of a PINNs model. We provide state-of-the-art numerical results across a series of benchmarks for which existing PINNs formulations fail, including the chaotic Lorenz system, the Kuramoto-Sivashinsky equation in the chaotic regime, and the Navier-Stokes equations in the turbulent regime. To the best of our knowledge, this is the first time that PINNs have been successful in simulating such systems, introducing new opportunities for their applicability to problems of industrial complexity.",
            "authors": [
                {
                    "_id": "645320c8ca4e0609eedd482c",
                    "name": "Sifan Wang",
                    "org": "Univ Penn, Grad Grp Appl Math & Computat Sci, Philadelphia, PA 19104 USA"
                },
                {
                    "_id": "65ed902f0b6735f4855eba41",
                    "name": "Shyam Sankaran",
                    "org": "Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA"
                },
                {
                    "_id": "6145a32d9e795e1aeca7521d",
                    "name": "Paris Perdikaris",
                    "org": "Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA"
                }
            ],
            "doi": "10.1016/j.cma.2024.116813",
            "issn": "0045-7825",
            "keywords": [
                "Deep learning",
                "Partial differential equations",
                "Computational physics",
                "Chaotic systems"
            ],
            "title": "Respecting Causality is All You Need for Training Physics-Informed Neural Networks",
            "venue": {
                "raw": "COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING"
            },
            "volume": "421",
            "year": 2024
        },
        {
            "_id": "629ec1f85aee126c0fb6f6f3",
            "abstract": "Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shapeoptimization via the method of mappings. In both cases, an appropriate mesh motion techniqueis required. The choice is typically based on heuristics, e.g., the solution operators of partialdifferential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter,which shows good numerical performance for large displacements, is expensive. Moreover,from a continuous perspective, choosing the mesh motion technique is to a certain extentarbitrary and has no influence on the physically relevant quantities. Therefore, we considerapproaches inspired by machine learning. We present a hybrid PDE-NN approach, where theneural network (NN) serves as parameterization of a coefficient in a second order nonlinearPDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neuralnetwork architecture. Moreover, we present an approach where a neural network corrects theharmonic extension such that the boundary displacement is not changed. In order to avoidtechnical difficulties in coupling finite element and machine learning software, we work witha splitting of the monolithic FSI system into three smaller subsystems. This allows to solve themesh motion equation in a separate step. We assess the quality of the learned mesh motiontechnique by applying it to a FSI benchmark problem. In addition, we discuss generalizabilityand computational cost of the learned mesh motion operators",
            "authors": [
                {
                    "_id": "64c672ac75f2d36822f045ad",
                    "name": "Johannes Haubner",
                    "org": "Karl Franzens Univ Graz, Inst Germanist, Univ Pl 3, A-8010 Graz, Austria"
                },
                {
                    "name": "Ottar Hellan",
                    "org": "Simula Res Lab, Kristian Augusts Gate 23, N-0164 Oslo, Norway"
                },
                {
                    "_id": "64352fa0f2699869fc1e1acd",
                    "name": "Marius Zeinhofer",
                    "org": "Simula Res Lab, Kristian Augusts Gate 23, N-0164 Oslo, Norway"
                },
                {
                    "_id": "62e477a4d9f204418d685b48",
                    "name": "Miroslav Kuchta",
                    "org": "Simula Res Lab, Kristian Augusts Gate 23, N-0164 Oslo, Norway"
                }
            ],
            "doi": "10.1016/j.cma.2024.116890",
            "issn": "0045-7825",
            "keywords": [
                "Fluid-structure interaction",
                "Neural networks",
                "Partial differential equations",
                "Hybrid PDE-NN",
                "Mesh moving techniques",
                "Data-driven approaches"
            ],
            "title": "Learning Mesh Motion Techniques with Application to Fluid-Structure Interaction",
            "venue": {
                "raw": "COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING"
            },
            "volume": "424",
            "year": 2024
        },
        {
            "_id": "6321467290e50fcafdb9bac6",
            "abstract": "We present and analyze a methodology for numerical homogenization of spatial networks models, e.g. heat conduction and linear deformation in large networks of slender objects, such as paper fibers. The aim is to construct a coarse model of the problem that maintains high accuracy also on the micro-scale. By solving decoupled problems on local subgraphs we construct a low dimensional subspace of the solution space with good approximation properties. The coarse model of the network is expressed by a Galerkin formulation and can be used to perform simulations with different source and boundary data, at a low computational cost. We prove optimal convergence to the micro-scale solution of the proposed method under mild assumptions on the homogeneity, connectivity, and locality of the network on the coarse scale. The theoretical findings are numerically confirmed for both scalar-valued (heat conduction) and vector-valued (linear deformation) models.",
            "authors": [
                {
                    "_id": "53f432abdabfaeecd6939333",
                    "name": "F. Edelvik",
                    "org": "Fraunhofer Chalmers Ctr, Computat Engn & Design, Chalmers Sci Pk, S-41288 Gothenburg, Sweden"
                },
                {
                    "_id": "64b7dc9284100e3215e9afa9",
                    "name": "M. Gortz",
                    "org": "Fraunhofer Chalmers Ctr, Computat Engn & Design, Chalmers Sci Pk, S-41288 Gothenburg, Sweden"
                },
                {
                    "_id": "641140cd1d2dbd0c2a38abb9",
                    "name": "F. Hellman",
                    "org": "Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden"
                },
                {
                    "_id": "640471d7eef5911ab846ec46",
                    "name": "G. Kettil",
                    "org": "Fraunhofer Chalmers Ctr, Computat Engn & Design, Chalmers Sci Pk, S-41288 Gothenburg, Sweden"
                },
                {
                    "_id": "53f47788dabfaefedbbb24e7",
                    "name": "A. Malqvist",
                    "org": "Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden"
                }
            ],
            "doi": "10.1016/j.cma.2023.116593",
            "issn": "0045-7825",
            "keywords": [
                "Algebraic connectivity",
                "Discrete model",
                "Multiscale method",
                "Network model",
                "Localized orthogonal decomposition",
                "Upscaling"
            ],
            "title": "Numerical Homogenization of Spatial Network Models",
            "venue": {
                "raw": "COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING"
            },
            "volume": "418",
            "year": 2024
        },
        {
            "_id": "6327dda690e50fcafd67df37",
            "abstract": "Nonlinear balanced truncation is a model order reduction technique that reduces the dimension of nonlinear systems in a manner that accounts for either open- or closed -loop observability and controllability aspects of the system. A computational challenges that has so far prevented its deployment on large-scale systems is that the energy functions required for characterization of controllability and observability are solutions of various high -dimensional Hamilton-Jacobi- (Bellman) equations, which are computationally intractable in high dimensions. This work proposes a unifying and scalable approach to this challenge by considering a Taylor -series -based approximation to solve a class of parametrized Hamilton-Jacobi-Bellman equations that are at the core of nonlinear balancing. The value of a formulation parameter provides either open -loop balancing or a variety of closed -loop balancing options. To solve for the coefficients of Taylorseries approximations to the energy functions, the presented method derives a linear tensor system and heavily utilizes it to numerically solve structured linear systems with billions of unknowns. The strength and scalability of the algorithm is demonstrated on two semi-discretized partial differential equations, namely the Burgers and the Kuramoto-Sivashinsky equations.",
            "authors": [
                {
                    "_id": "63ae510f7d3ea0c54a781a8d",
                    "name": "Boris Kramer",
                    "org": "Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA"
                },
                {
                    "_id": "53f42bbadabfaedce54ab757",
                    "name": "Serkan Gugercin",
                    "org": "Virginia Tech, Dept Math, Blacksburg, VA 24061 USA"
                },
                {
                    "_id": "53f438dfdabfaedd74db81ad",
                    "name": "Jeff Borggaard",
                    "org": "Virginia Tech, Dept Math, Blacksburg, VA 24061 USA"
                },
                {
                    "_id": "6524aeba55b3f8ac4642a4e3",
                    "name": "Linus Balicki",
                    "org": "Virginia Tech, Dept Math, Blacksburg, VA 24061 USA"
                }
            ],
            "doi": "10.1016/j.cma.2024.117011",
            "issn": "0045-7825",
            "keywords": [
                "Reduced-order modeling",
                "Balanced truncation",
                "Nonlinear manifolds",
                "Hamilton-Jacobi-Bellman equation",
                "Nonlinear systems"
            ],
            "title": "Scalable Computation of Energy Functions for Nonlinear Balanced Truncation",
            "venue": {
                "raw": "Computer Methods in Applied Mechanics and Engineering"
            },
            "volume": "427",
            "year": 2024
        },
        {
            "_id": "633269fb90e50fcafd4913e6",
            "abstract": "In recent years operator networks have emerged as promising deep learning tools for approximating the solution to partial differential equations (PDEs). These networks map input functions that describe material properties, forcing functions and boundary data to the solution of a PDE. This work describes a new architecture for operator networks that mimics the form of the numerical solution obtained from an approximate variational or weak formulation of the problem. The application of these ideas to a generic elliptic PDE leads to a variationally mimetic operator network (VarMiON). Like the conventional Deep Operator Network (DeepONet) the VarMiON is also composed of a sub-network that constructs the basis functions for the output and another that constructs the coefficients for these basis functions. However, in contrast to the DeepONet, the architecture of these sub-networks in the VarMiON is precisely determined. An analysis of the error in the VarMiON solution reveals that it contains contributions from the error in the training data, the training error, the quadrature error in sampling input and output functions, and a \"covering error\" that measures the distance between the test input functions and the nearest functions in the training dataset. It also depends on the stability constants for the exact solution operator and its VarMiON approximation. The application of the VarMiON to a canonical elliptic PDE and a nonlinear PDE reveals that for approximately the same number of network parameters, on average the VarMiON incurs smaller errors than a standard DeepONet and a recently proposed multiple-input operator network (MIONet). Further, its performance is more robust to variations in input functions, the techniques used to sample the input and output functions, the techniques used to construct the basis functions, and the number of input functions.",
            "authors": [
                {
                    "_id": "637254afec88d95668ccf55f",
                    "name": "Dhruv Patel",
                    "org": "Stanford Univ, Dept Mech Engn, Stanford, CA USA"
                },
                {
                    "_id": "62e48a25d9f204418d6a0ba6",
                    "name": "Deep Ray",
                    "org": "Univ Maryland, Dept Math, College Pk, MD USA"
                },
                {
                    "_id": "63af888784ab04bd7fb65276",
                    "name": "Michael R. A. Abdelmalik",
                    "org": "Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands"
                },
                {
                    "_id": "53f430ebdabfaeb1a7bb80a6",
                    "name": "Thomas J. R. Hughes",
                    "org": "Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX USA"
                },
                {
                    "_id": "53f436bfdabfaedce553252c",
                    "name": "Assad A. Oberai",
                    "org": "Univ Southern Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90007 USA"
                }
            ],
            "doi": "10.1016/j.cma.2023.116536",
            "issn": "0045-7825",
            "keywords": [
                "Variational formulation",
                "Deep neural operator",
                "Deep operator network",
                "Error analysis"
            ],
            "title": "Variationally Mimetic Operator Networks",
            "venue": {
                "raw": "COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING"
            },
            "volume": "419",
            "year": 2024
        },
        {
            "_id": "6344dee690e50fcafd24e879",
            "abstract": "Hybrid quantum mechanics/molecular mechanics (QM/MM) models play a pivotal role in molecular simulations. These models provide a balance between accuracy, surpassing pure MM models, and computational efficiency, offering advantages over pure QM models. Adaptive approaches have been developed to further improve this balance by allowing on -the -fly selection of the QM and MM subsystems as necessary. We propose a novel and robust adaptive QM/MM method for practical material defect simulations. To ensure mathematical consistency with the QM reference model, we employ machine -learning interatomic potentials (MLIPs) as the MM models (Chen et al., 2022 and Grigorev et al., 2023). Our adaptive QM/MM method utilizes a residual -based error estimator that provides both upper and lower bounds for the approximation error, thus indicating its reliability and efficiency. Furthermore, we introduce a novel adaptive algorithm capable of anisotropically updating the QM/MM partitions. This update is based on the proposed residual -based error estimator and involves solving a free interface motion problem, which is efficiently achieved using the fast marching method. We demonstrate the robustness of our approach via numerical tests on a range of crystalline defects comprising edge dislocations, cracks and di-interstitials.",
            "authors": [
                {
                    "_id": "64bfb90975f2d368227b888d",
                    "name": "Yangshuai Wang",
                    "org": "Univ British Columbia, 1984 Math Rd, Vancouver, BC, Canada"
                },
                {
                    "_id": "53f31d4edabfae9a84441861",
                    "name": "James R. Kermode",
                    "org": "Univ Warwick, Warwick Ctr Predict Modelling, Sch Engn, Coventry CV4 7AL, England"
                },
                {
                    "_id": "619325ac6750f83ab8797ded",
                    "name": "Christoph Ortner",
                    "org": "Univ British Columbia, 1984 Math Rd, Vancouver, BC, Canada"
                },
                {
                    "_id": "542a4f8cdabfae61d4968d4d",
                    "name": "Lei Zhang",
                    "org": "Shanghai Jiao Tong Univ, Inst Nat Sci, Sch Math Sci, Shanghai 200240, Peoples R China"
                }
            ],
            "doi": "10.1016/j.cma.2024.117097",
            "issn": "0045-7825",
            "keywords": [
                "QM/MM coupling",
                "Machine-learned interatomic potentials",
                "A posteriori error estimate",
                "Adaptive algorithm",
                "Crystal defects"
            ],
            "title": "A Posteriori Error Estimate and Adaptivity for QM/MM Models of Defects",
            "venue": {
                "raw": "COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING"
            },
            "volume": "428",
            "year": 2024
        },
        {
            "_id": "6348d42590e50fcafd5530ab",
            "abstract": "We present a rate-independent model for isotropic elastic–orthotropic plastic material behaviour in a hyper-elasto-plastic setting at finite strains, which is based on a covariant formulation that includes plastic-deformation-induced evolution of orthotropy. The model relies on a treatment by Lu and Papadopoulos, who made use of the postulate of covariance for an anisotropic elasto-plastic solid and derived constitutive equations of evolving anisotropies at finite strains. The latter is tantamount to the notion of plastic spin. This treatment does not rely on a multiplicative decomposition of the deformation gradient. We test our model on in-plane sheet-metal forming processes, which are governed by the evolution of pre-existing preferred material orientations. Hence, we advocate an orthotropic yield criterion directed by evolving structural tensors to describe this material behaviour. Our formulation yields two key findings. Firstly, the covariant formulation of plasticity yields suitable evolution equations for the structural tensors characterising the symmetry group of the orthotropic yield function. Secondly, the constitutive equations for the plastic variables and the structural tensors, which are both symmetric second-order tensors, give results that are in good agreement with experimental and numerical findings from in-plane sheet forming processes.",
            "authors": [
                {
                    "_id": "53f44753dabfaee43ec816d5",
                    "name": "Christian C. Celigoj",
                    "org": "Graz Univ Technol, Inst Strength Mat, Kopernikusgasse 24-I, A-8010 Graz, Austria"
                },
                {
                    "_id": "53f380c2dabfae4b349f707b",
                    "name": "Manfred H. Ulz",
                    "org": "Graz Univ Technol, Inst Strength Mat, Kopernikusgasse 24-I, A-8010 Graz, Austria"
                }
            ],
            "doi": "10.1016/j.cma.2022.115567",
            "issn": "0022-5096",
            "keywords": [
                "Postulate of covariance",
                "Orthotropy",
                "Evolving anisotropy",
                "Plastic spin",
                "Pulp fibres",
                "Natural fibres"
            ],
            "title": "An Orthotropic Plasticity Model at Finite Strains with Plasticity-Induced Evolution of Orthotropy Based on a Covariant Formulation",
            "venue": {
                "raw": "JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS"
            },
            "volume": "193",
            "year": 2024
        },
        {
            "_id": "6348d44b90e50fcafd5557cc",
            "abstract": "A hydro-mechanical-damage fully coupled numerical method is developed for simulations of complicated quasi-brittle fracking in poroelastic media. A unified fluid continuity equation with crack-width dependent permeability, based on the Biot’s poroelastic theory, is used for simultaneous modeling of fluid flow in both fractures and porous media. The fluid pressure is coupled into the governing equations of the phase-field regularized cohesive zone model, which can automatically predict quasi-brittle multi-crack initiation, nucleation, and propagation without remeshing, crack tracking, or auxiliary fields as needed by other methods. An alternate minimization Newton–Raphson iterative algorithm is implemented within the finite element framework to solve the above three-fields coupled problem with nodal degrees of freedom of displacements, fluid pressures, and damages. The method is first validated by three problems with analytical solutions, a problem with experimental results, and a two-crack merging problem with numerical results in published literature, in terms of time evolutions of injected fluid pressures, crack widths and lengths, and final crack paths. Horizontal wellbore fracking problems with parallel hydraulic cracks and random natural fractures are then simulated, with the effects of spacing, number, and angle of perforations investigated in detail. It is found that the developed method is capable of modeling complex multi-crack fracking in both homogeneous media and heterogeneous media with natural fractures, and is thus promising for fracking design optimization of practical exploitation of shale gas and oil.",
            "authors": [
                {
                    "_id": "5614b61b45cedb3397a6310e",
                    "name": "Hui Li",
                    "org": "Wuhan Univ, Sch Civil Engn, Hubei Key Lab Geotech & Struct Safety, Wuhan 430027, Peoples R China"
                },
                {
                    "_id": "542a6a57dabfae2b4e10175d",
                    "name": "Zhenjun Yang",
                    "org": "Wuhan Univ, Sch Civil Engn, Hubei Key Lab Geotech & Struct Safety, Wuhan 430027, Peoples R China"
                },
                {
                    "_id": "56113f4f45ce1e596272d068",
                    "name": "Fengchen An",
                    "org": "China Univ Petr, Sch Safety & Ocean Engn, Beijing 102249, Peoples R China"
                },
                {
                    "_id": "53f42c7edabfaedce54b7e69",
                    "name": "Jianying Wu",
                    "org": "South China Univ Technol, State Key Lab Subtrop Bldg Sci, Guangzhou 510641, Peoples R China"
                }
            ],
            "doi": "10.1016/j.enggeo.2024.107502",
            "issn": "0013-7952",
            "keywords": [
                "Phase field model",
                "Dynamic fracture",
                "Quasi-brittle fracture",
                "Hydraulic fracturing",
                "Pulsing fracking",
                "Horizontal well"
            ],
            "title": "Simulation of Dynamic Pulsing Fracking in Poroelastic Media by a Hydro-Damage-mechanical Coupled Cohesive Phase Field Model",
            "venue": {
                "raw": "ENGINEERING GEOLOGY"
            },
            "volume": "334",
            "year": 2024
        }
    ],
    "log_id": "33Mf4NbmpwKQI9oLH5EQ9WmYp4b",
    "msg": "",
    "success": true,
    "total": 10
}
Modified at 2025-09-30 11:14:33
Previous
Get Paper Details by Conditions
Next
Paper Batch Query API
Built with