- Large Language Model
- API Migration Guide
- Exclusive Feature
- Model Support
- OpenAI
- Chat(Talk)
- Chat(Streamed return.)
- Chat (gpt-4o Image Analysis)
- Chat (gpt-4o Structured Output)
- Chat (gpt-4o function call)
- Chat (gpt-4-plus image analysis)
- Chat (gpt-4-plus image generation)
- Chat(gpt-4o-image-generation modify image)
- Chat (gpts model)
- Chat (chatgpt-4o-latest)
- Chat (o1 Series Model)
- Chat (o3 Series Model)
- Chat(gpt-4o audio model)
- Anthropic
- Gemini
- China Model
- Chat (Baidu ERNIE)
- Chat (Tongyi Qianwen)
- Chat (Tongyi Qianwen-VL)
- Chat(Tongyi Qianwen-OCR)
- Chat (Zhipu GLM-4)
- Chat (Zhipu GLM-4V)
- Chat (Baichuan AI)
- Chat (Moonshot AI)
- Chat (Moonshot AI-Vision)
- Chat (01.AI)
- Chat (01.AI-VL)
- Chat (DeepSeek)
- Chat (DeepSeek-VL2)
- Chat (ByteDance Doubao)
- Chat (ByteDance Doubao-Vision)
- Chat(ByteDance Doubao Image Generation)
- Chat (Stepfun)
- Chat (Stepfun Multimodal)
- Chat (iFLYTEK Spark)
- Chat (SenseTime)
- Chat(Minimax)
- Chat (Tencent Hunyuan)
- SiliconFlow
- Open Source Model
- Chat(LLaMA3.3)
- Chat(LLaMA3.2 multimodal)
- Chat(LLaMA3.1)
- Chat(Mixtral-8x7B)
- Chat(Mistral-Large-2411)
- Chat(Mistral-small-2503)
- Chat(Pixtral-Large-2411multimodal)
- Chat(Gemma-7B、Gemma-3-27b-it)
- Chat(Gemma2-9B)
- Chat(Command R+)
- Chat(Qwen2)
- Chat(Qwen2.5)
- Chat(Qwen2.5-VL)
- Chat(Llama-3.1-nemotron)
- Chat(QwQ-32B、QwQ-Plus、QwQ-32B-Preview)
- Expert Model
- Other Models
- Image Generation
- DALL.E
- Stability.ai
- Text-to-image (Image Generation-V1)
- Generate (Image Generation-SD2)
- Generate (Image Generation-SD3-Ultra)
- Generate (Image Generation-SD3)
- Generate(Image Generation-SD3.5-Large)
- Generate(Image Generation-SD3.5-Medium)
- Generate(Image to Image-SD3)
- Generate(Image to Image-SD3.5-Large)
- Generate(Image to Image-SD3.5-Medium)
- Midjourney
- Midjourney-Relax
- 302.AI
- Glif
- Flux
- Ideogram
- Recraft
- Luma
- Doubao
- Google
- Minimax
- ZHIPU
- Baidu
- Hidream
- Image Processing
- 302.AI
- Upscale
- Upscale-V2
- Upscale-V3
- Upscale-V4
- Super-Upscale
- Super-Upscale-V2
- Face-upscale
- Colorize
- Colorize-V2
- Removebg
- Removebg-V2
- Inpaint
- Erase
- Face-to-many
- Llava
- Relight
- Relight-background
- Relight-V2
- Face-swap-V2
- Fetch
- HtmltoPng
- SvgToPng
- image-translate
- image-translate-query
- image-translate-redo
- Flux-selfie
- Trellis(Image to 3D model)
- Pose-Transfer(Human Pose Transformation)
- Pose-Transfer(Human Pose Transformation Result)
- Virtual-Tryon
- Virtual-Tryon(Fetch Result)
- Denoise(AI Denoising)
- Deblur(AI Deblurring)
- 302.AI-ComfyUI
- Create Outfit Change Task
- Create Outfit Change Task (Upload Mask)
- Query Outfit Change Task Status
- Create Face Swap Task
- Query Face Swap Task Status
- Create a Task to Replace Any Item
- Create Object Replacement Task (Upload Mask)
- Check the Status of Any Object Replacement Task
- Create a Task to Transform Cartoon Characters into Real People
- Query the status of the task to turn a manga character into a real person
- Create Style Transfer Task
- Query the status of the style transfer task
- Vectorizer
- Stability.ai
- Glif
- Clipdrop
- Recraft
- BRIA
- Flux
- Flux-V1.1-Ultra-Redux(Image-to-image generation-Ultra)
- Flux-V1.1-Pro-Redux(Image-to-image generation-Pro)
- Flux-Dev-Redux(Image-to-image generation-Dev)
- Flux-Schnell-Redux(Image-to-image generation-Schnell)
- Flux-V1-Pro-Canny(Object consistency)
- Flux-V1-Pro-Depth (Depth consistency)
- Flux-V1-Pro-Fill(Partial repainting)
- Hyper3D
- Tripo3D
- FASHN
- Ideogram
- Doubao
- Kling
- 302.AI
- Video Generation
- Unified Interface
- 302.AI
- Stable Diffusion
- Luma AI
- Runway
- Kling
- Txt2Video(Text to Video 1.0 Rapid-5s)
- Txt2Video_HQ(Text to Video 1.5 HQ-5s)
- Txt2Video_HQ(Text to Video 1.5 HQ-10s)
- Image2Video(Image to Video 1.0 Rapid-5s)
- Image2Video(Image to Video 1.0 Rapid-10s)
- Image2Video(Image to Video 1.5 Rapid-5s)
- Image2Video(Image to Video 1.5 Rapid-10s)
- Image2Video_HQ(Image to Video 1.5 HQ-5s)
- Image2Video_HQ(Image to Video 1.5 HQ-10s)
- Txt2Video(Text to Video 1.6 Standard-5s)
- Txt2Video(Text to Video 1.6 Standard-10s)
- Txt2Video(Text to Video 1.6 HQ-5s)
- Txt2Video(Text to Video 1.6 HQ-10s)
- Image2Video(Image to Video 1.6 Standard-5s)
- Image2Video(Image to Video 1.6 Standard-10s)
- Image2Video(Image to Video 1.6 HQ-5s)
- Image2Video(Image to Video 1.6 HQ-10s)
- Txt2Video(Text-to-Video 2.0 – HD – 5s)
- Image2Video(Image-to-Video 2.0 – HD – 5s)
- Image2Video(Image-to-Video 2.0 – HD – 10s)
- Image2Video (Multiple pictures for reference)
- Extend_Video
- Fetch
- CogVideoX
- Minimax
- Pika
- 1.5 pikaffects(Image-to-Video Generation)
- Turbo Generate(Text-to-Video Generation)
- Turbo Generate(Text-to-Video Generation)
- 2.1 Generate(Text-to-Video Generation)
- 2.1 Generate(Image-to-Video Generation)
- 2.2 Generate(Text-to-Video Generation)
- 2.2 Generate(Image-to-Video Generation)
- 2.2 Pikascenes(Generate scene videos)
- Fetch(Result)
- PixVerse
- Genmo
- Hedra
- Haiper
- Sync.
- Lightricks
- Hunyuan
- Vidu
- Tongyi Wanxiang
- Jimeng
- SiliconFlow
- Kunlun Tech
- Audio/Video Processing
- 302.AI
- Stable-Audio(instrumental generation)
- Transcript (Audio/Video to Text)
- Transcriptions(Speech to Text)
- Alignments(Subtitle Timing)
- WhisperX
- F5-TTS(Text to Speech)
- F5-TTS (Asynchronous Text-to-Speech)
- F5-TTS (Asynchronously Retrieve Results)
- mmaudio(Text-to-Speech)
- mmaudio(AI Video Voiceover)
- mmaudio (Asynchronous Result Retrieval)
- Diffrhythm(Song Generation)
- OpenAI
- Azure
- Suno
- Doubao
- Fish Audio
- Minimax
- Dubbingx
- Udio
- Elevenlabs
- Mureka
- 302.AI
- Information Processing
- 302.AI
- Admin Dashboard
- Information search
- Xiaohongshu_Search
- Xiaohongshu_Note
- Get_Home_Recommend
- Tiktok_Search
- Douyin_Search
- Twitter_Search
- Twitter_Post(X_Post)
- Twitter_User(X_User)
- Weibo_Post
- Search_Video
- Youtube_Info
- Youtube_Subtitles(Youtube Obtain Subtitles)
- Bilibili_Info(Bilibili Obtain Video Information)
- MP_Article_List(Get the list of WeChat official account articles)
- MP_Article(Retrieve WeChat Official Account articles)
- File processing
- Code execution
- Remote Browser
- Tavily
- SearchAPI
- Search1API
- Exa
- Bocha AI
- Doc2x
- Glif
- Jina
- DeepL
- RSSHub
- Firefly card
- Youdao
- Mistral
- 302.AI
- RAG-related
- OpenAI
- Jina
- China Model
- 302.AI
- Tools API
- AI Video Creation Hub
- AI Paper Writing
- AI Podcast Production
- AI Writing Assistant
- AI Video Real-Time Translation
- AI Document Editor
- Web Data Extraction Tool
- AI Prompt Expert
- AI 3D Modeling
- AI Search Master 3.0
- AI Vector Graphics Generation
- Al Answer Machine
- AI PPT Generator
- Generate PPT interface with one click
- File parsing
- Generate an outline
- Generate outline content
- Get template options
- Generate PPT interface (synchronous interface)
- Load PPT data
- Generate PPT interface (asynchronous interface)
- Asynchronous query generates PPT status
- Download PPT
- Add/update custom PPT templates
- Pagination query PPT template
- AI Academic Paper Search
- One-Click Website Deployment
- Help Center
Rerank(Multimodal Reordering)
POST
/jina/v1/rerank
jina-reranker-m0
Request
Authorization
Provide your bearer token in the
Authorization
header when making requests to protected resources.Example:
Authorization: Bearer ********************
Header Params
Authorization
string
optional
Example:
Bearer {{YOUR_API_KEY}}
Body Params application/json
model
string
required
input
array[string]
required
query
string
required
documents
array[string]
required
top_n
integer
required
Example
{
"model": "jina-reranker-m0",
"query": "small language model data extraction",
"documents": [
{
"image": "https://raw.githubusercontent.com/jina-ai/multimodal-reranker-test/main/handelsblatt-preview.png"
},
{
"image": "https://raw.githubusercontent.com/jina-ai/multimodal-reranker-test/main/paper-11.png"
},
{
"image": "https://raw.githubusercontent.com/jina-ai/multimodal-reranker-test/main/wired-preview.png"
},
{
"text": "We present ReaderLM-v2, a compact 1.5 billion parameter language model designed for efficient web content extraction. Our model processes documents up to 512K tokens, transforming messy HTML into clean Markdown or JSON formats with high accuracy -- making it an ideal tool for grounding large language models. The models effectiveness results from two key innovations: (1) a three-stage data synthesis pipeline that generates high quality, diverse training data by iteratively drafting, refining, and critiquing web content extraction; and (2) a unified training framework combining continuous pre-training with multi-objective optimization. Intensive evaluation demonstrates that ReaderLM-v2 outperforms GPT-4o-2024-08-06 and other larger models by 15-20% on carefully curated benchmarks, particularly excelling at documents exceeding 100K tokens, while maintaining significantly lower computational requirements."
},
{
"image": "https://jina.ai/blog-banner/using-deepseek-r1-reasoning-model-in-deepsearch.webp"
},
{
"text": "Is data extraction needed? Why not use regex? If you use regex, wouldn't it solve everything?"
},
{
"text": "During the California Gold Rush, some merchants made more money selling supplies to miners than the miners made finding gold."
},
{
"text": "Die wichtigsten Beiträge unserer Arbeit sind zweifach: Erstens führen wir eine neuartige dreistufige Datensynthese-Pipeline namens Draft-Refine-Critique ein, die durch iterative Verfeinerung hochwertige Trainingsdaten generiert; und zweitens schlagen wir eine umfassende Trainingsstrategie vor, die kontinuierliches Vortraining zur Längenerweiterung, überwachtes Feintuning mit spezialisierten Kontrollpunkten, direkte Präferenzoptimierung (DPO) und iteratives Self-Play-Tuning kombiniert. Um die weitere Forschung und Anwendung der strukturierten Inhaltsextraktion zu erleichtern, ist das Modell auf Hugging Face öffentlich verfügbar."
},
{
"image": "iVBORw0KGgoAAAANSUhEUgAAAMwAAADACAMAAAB/Pny7AAAA7VBMVEX///8AAABONC780K49Wv5gfYu8vLwiIiIAvNRHLypceJ5hfoc4Vf//1bL8/PxSbsCCgoLk5OQpKSlOQDXctpgZEA9AXv8SG0sGCRorHRocKnY4U+sKDQ7rwqISGBssOkE+Pj5fX19MY29ZdIF1YFGHcF68m4EjLTKSkpInOqIcJSndzbU9UFlcv87DyrvrzrF1wcpOTk6jo6OixsE7MCg4JSHLy8skNZLNqo4EBQ9kU0VZSj0uJh93d3cyMjKihnBvamZca3KoqbI8R5YaLI41R3omM1lNZ7EAAEEbIy46TGcwPk8jEQyIw8eZjobFTeMIAAAFHUlEQVR4nO3da0PaOhwG8CGOHqYwKqBjFKQ6sJt63Biy6Siw+/18/48zSP7FhqU5XNr04vP4igRCfmsX2jSFBw+2TTm0bN2V7ePkQooTt2SWvhGOxejHLZml3w4H0wYm5ACTWExIA0A8GNN+5c/YYn2pF7dNh7dX0YvpyP5hG8WdLdPgDdnAAANM6jD1dGMa10K2tXiYTp9HzxmBh9l6U8gxlI4JDDDAABNRyibLsFNnCRtzzZutc8x4yN8tqhG6cGDNQ4qwLV6KtGnYe1kHhagwRkif9StheAxggAEGmJRidmiyhj5vDjosoc+qa8JQ6sIWCn0CSiumCAwwwNxfzA5N+tQzgaE0gAEGGGBCU5hDFmfUYNFpCR/jjFkGWjdJVJgKb1DvJgEGGGCAiQXjzeEXpaVi6GJuUVrppRgrRnZ4cJ2TpeFhpLU5oaFYMEU5xgIGGGDuDybXEMMLB5Meyy11VKgcUSVlwkstek7oszPrYKS5bZVYurLKwduSPzVpCwnCvKuV8vMEYfJ3AQaYLGBc3uCvjTHVBGEKlXmcqWoBoxxT7bJMWry/va4kk5qIoeJRRBi6japg5IJXAMkx3RbLoqstWfJieGGtGhGGopwEDMDkS/mNUmolEbNpgAEmuxi+OoTmAKxB1Z8Jde2KR97vK1ktYSy6RUjTchNxaeWoV/OHht3z35fzvPxXannNKi/FSsIYfb5UM/Tlp3KMuOh1UBOO52lgPr/8h0WOeckrX0sxelc1/YWR9BcYYO43ZkeBGaUM482biHNB72hypZUujBcR86wlDMapx8h6CgwwwGQTQ3M12cCIVytSjskBAwww/4ORXqBMKWZo80hNSszVb9mchbIyaox3B+14bUz+6pxFPtd0LquMGkORf+2EGrN+gAEGmIRijANf2qnGlIcFf1wrVIx3gfbZSAtmKfRlbeFhhL1XN6YNDDDRY7L0f8ZZDM3B07MB/ZZmae2MXszQYStr/lNNnMstrZ4stKzRqPAMtWI8Ez8ukF/SCNihxLU+YjR9vZESI7/YFIAZAAMMMMuLGlRRYsZxYkyXzdxMxeUmyvSmdnCmcWJo6sZ0qyvHNVVJwJfRl23FrrMUOwH9Vcacro6JdU9aJcAkNaa9OsZOOqbssrvtO3T1oz4a+DKi5YJGhz3JTfoAQFM3Q9rbbsXDe7qzaUpPSjrGC52ydcXPfLqxIQk/AbJOPIx4OAZM/AEmqcniACAfmlOKkQeYGANMUgNMjFFORzjts8C0HeVLY8HYwkVnMcbJQ0VOVK/U+ysnC4xqT7pQYS5UrwQGGGASjaHfJbVz7XlokaPV9sdSj2ZLT/a3MMPo/N1Ts+KyS6fvT1iOeV/OToScqjCn4nPPuOWYP3rPGncrmn6yhdZoUn8vOOZY2X0l7ZhjaM885a1ruj7jrTeLFqP5x3SAASaS8CFzhrmZJToMa32GiXSENvk6xg8fP72Z5dNjns83rC9fvj7eMF+/sAZuPtNj3vrHD/zdotpABb4DfGsesuzuz7P7/Akrfdrkj9fObvMpa+DJc2qQt978xt8t4ltOjpq7vhzeYTbMAnMolB6x0qjvnwEGGGCAAQYYYIABJjmY74+E/ODnMz8fbZyfrAHrh1j6XQvmxemeP4uTs70Nszg5E0tfaMIIJ4phn2l6pcAAAwwwwAADDDBRYvYWfz6Mr3Bv6U9V4MP46jVhMnXUfCTMkN9NnG82b76/vzRx7rWLkzNggAEGmCxg/gAcTwKRD+vGjgAAAABJRU5ErkJggg=="
}
],
"return_documents": false
}
Request samples
Shell
JavaScript
Java
Swift
Go
PHP
Python
HTTP
C
C#
Objective-C
Ruby
OCaml
Dart
R
Request Request Example
Shell
JavaScript
Java
Swift
curl --location --request POST 'https://api.302.ai/jina/v1/rerank' \
--header 'Authorization: Bearer sk-jls4AaVBGoe1GwZD64qZA1qyKTN1MPHa4NmvH1cT68z7K1Zz' \
--header 'Content-Type: application/json' \
--data-raw '{
"model": "jina-reranker-m0",
"query": "small language model data extraction",
"documents": [
{
"image": "https://raw.githubusercontent.com/jina-ai/multimodal-reranker-test/main/handelsblatt-preview.png"
},
{
"image": "https://raw.githubusercontent.com/jina-ai/multimodal-reranker-test/main/paper-11.png"
},
{
"image": "https://raw.githubusercontent.com/jina-ai/multimodal-reranker-test/main/wired-preview.png"
},
{
"text": "We present ReaderLM-v2, a compact 1.5 billion parameter language model designed for efficient web content extraction. Our model processes documents up to 512K tokens, transforming messy HTML into clean Markdown or JSON formats with high accuracy -- making it an ideal tool for grounding large language models. The models effectiveness results from two key innovations: (1) a three-stage data synthesis pipeline that generates high quality, diverse training data by iteratively drafting, refining, and critiquing web content extraction; and (2) a unified training framework combining continuous pre-training with multi-objective optimization. Intensive evaluation demonstrates that ReaderLM-v2 outperforms GPT-4o-2024-08-06 and other larger models by 15-20% on carefully curated benchmarks, particularly excelling at documents exceeding 100K tokens, while maintaining significantly lower computational requirements."
},
{
"image": "https://jina.ai/blog-banner/using-deepseek-r1-reasoning-model-in-deepsearch.webp"
},
{
"text": "Is data extraction needed? Why not use regex? If you use regex, wouldn'\''t it solve everything?"
},
{
"text": "During the California Gold Rush, some merchants made more money selling supplies to miners than the miners made finding gold."
},
{
"text": "Die wichtigsten Beiträge unserer Arbeit sind zweifach: Erstens führen wir eine neuartige dreistufige Datensynthese-Pipeline namens Draft-Refine-Critique ein, die durch iterative Verfeinerung hochwertige Trainingsdaten generiert; und zweitens schlagen wir eine umfassende Trainingsstrategie vor, die kontinuierliches Vortraining zur Längenerweiterung, überwachtes Feintuning mit spezialisierten Kontrollpunkten, direkte Präferenzoptimierung (DPO) und iteratives Self-Play-Tuning kombiniert. Um die weitere Forschung und Anwendung der strukturierten Inhaltsextraktion zu erleichtern, ist das Modell auf Hugging Face öffentlich verfügbar."
},
{
"image": "iVBORw0KGgoAAAANSUhEUgAAAMwAAADACAMAAAB/Pny7AAAA7VBMVEX///8AAABONC780K49Wv5gfYu8vLwiIiIAvNRHLypceJ5hfoc4Vf//1bL8/PxSbsCCgoLk5OQpKSlOQDXctpgZEA9AXv8SG0sGCRorHRocKnY4U+sKDQ7rwqISGBssOkE+Pj5fX19MY29ZdIF1YFGHcF68m4EjLTKSkpInOqIcJSndzbU9UFlcv87DyrvrzrF1wcpOTk6jo6OixsE7MCg4JSHLy8skNZLNqo4EBQ9kU0VZSj0uJh93d3cyMjKihnBvamZca3KoqbI8R5YaLI41R3omM1lNZ7EAAEEbIy46TGcwPk8jEQyIw8eZjobFTeMIAAAFHUlEQVR4nO3da0PaOhwG8CGOHqYwKqBjFKQ6sJt63Biy6Siw+/18/48zSP7FhqU5XNr04vP4igRCfmsX2jSFBw+2TTm0bN2V7ePkQooTt2SWvhGOxejHLZml3w4H0wYm5ACTWExIA0A8GNN+5c/YYn2pF7dNh7dX0YvpyP5hG8WdLdPgDdnAAANM6jD1dGMa10K2tXiYTp9HzxmBh9l6U8gxlI4JDDDAABNRyibLsFNnCRtzzZutc8x4yN8tqhG6cGDNQ4qwLV6KtGnYe1kHhagwRkif9StheAxggAEGmJRidmiyhj5vDjosoc+qa8JQ6sIWCn0CSiumCAwwwNxfzA5N+tQzgaE0gAEGGGBCU5hDFmfUYNFpCR/jjFkGWjdJVJgKb1DvJgEGGGCAiQXjzeEXpaVi6GJuUVrppRgrRnZ4cJ2TpeFhpLU5oaFYMEU5xgIGGGDuDybXEMMLB5Meyy11VKgcUSVlwkstek7oszPrYKS5bZVYurLKwduSPzVpCwnCvKuV8vMEYfJ3AQaYLGBc3uCvjTHVBGEKlXmcqWoBoxxT7bJMWry/va4kk5qIoeJRRBi6japg5IJXAMkx3RbLoqstWfJieGGtGhGGopwEDMDkS/mNUmolEbNpgAEmuxi+OoTmAKxB1Z8Jde2KR97vK1ktYSy6RUjTchNxaeWoV/OHht3z35fzvPxXannNKi/FSsIYfb5UM/Tlp3KMuOh1UBOO52lgPr/8h0WOeckrX0sxelc1/YWR9BcYYO43ZkeBGaUM482biHNB72hypZUujBcR86wlDMapx8h6CgwwwGQTQ3M12cCIVytSjskBAwww/4ORXqBMKWZo80hNSszVb9mchbIyaox3B+14bUz+6pxFPtd0LquMGkORf+2EGrN+gAEGmIRijANf2qnGlIcFf1wrVIx3gfbZSAtmKfRlbeFhhL1XN6YNDDDRY7L0f8ZZDM3B07MB/ZZmae2MXszQYStr/lNNnMstrZ4stKzRqPAMtWI8Ez8ukF/SCNihxLU+YjR9vZESI7/YFIAZAAMMMMuLGlRRYsZxYkyXzdxMxeUmyvSmdnCmcWJo6sZ0qyvHNVVJwJfRl23FrrMUOwH9Vcacro6JdU9aJcAkNaa9OsZOOqbssrvtO3T1oz4a+DKi5YJGhz3JTfoAQFM3Q9rbbsXDe7qzaUpPSjrGC52ydcXPfLqxIQk/AbJOPIx4OAZM/AEmqcniACAfmlOKkQeYGANMUgNMjFFORzjts8C0HeVLY8HYwkVnMcbJQ0VOVK/U+ysnC4xqT7pQYS5UrwQGGGASjaHfJbVz7XlokaPV9sdSj2ZLT/a3MMPo/N1Ts+KyS6fvT1iOeV/OToScqjCn4nPPuOWYP3rPGncrmn6yhdZoUn8vOOZY2X0l7ZhjaM885a1ruj7jrTeLFqP5x3SAASaS8CFzhrmZJToMa32GiXSENvk6xg8fP72Z5dNjns83rC9fvj7eMF+/sAZuPtNj3vrHD/zdotpABb4DfGsesuzuz7P7/Akrfdrkj9fObvMpa+DJc2qQt978xt8t4ltOjpq7vhzeYTbMAnMolB6x0qjvnwEGGGCAAQYYYIABJjmY74+E/ODnMz8fbZyfrAHrh1j6XQvmxemeP4uTs70Nszg5E0tfaMIIJ4phn2l6pcAAAwwwwAADDDBRYvYWfz6Mr3Bv6U9V4MP46jVhMnXUfCTMkN9NnG82b76/vzRx7rWLkzNggAEGmCxg/gAcTwKRD+vGjgAAAABJRU5ErkJggg=="
}
],
"return_documents": false
}'
Responses
🟢200成功
application/json
Body
object {0}
Example
{}
Modified at 2025-04-10 03:02:09